Liquid Energy

Rivers and Hydro Electricity

Hydro-electric power, using the potential energy of rivers, is by far the best-established means of electricity generation from renewable sources.  Hydro-power using large storage reservoirs is not a major option for the future in the developed countries because most major sites in these countries having potential for harnessing gravity in this way are either being exploited already or are unavailable for other reasons such as environmental considerations. Growth to 2030 is expected mostly in China and Latin America. China has commissioned the $26 billion Three Gorges dam, which will produce 18 GWe, but it has displaced over 1.2 million people.

The chief advantage of hydro systems is their capacity to handle seasonal (as well as daily) high peak loads. In practice the utilization of stored water is sometimes complicated by demands for irrigation which may occur out of phase with peak electrical demands.

Run-of-river hydro systems are usually much smaller than dammed ones but have potentially wider application. Some short-term pondage can help them adapt to daily load profiles, but generally they produce continuously, apart from seasonal variation in river flows. Pumped storage is discussed below under: Renewables in relation to base-load Electricity Demand.

Tidal Energy

Harnessing the tides with a barrage in a bay or estuary has been achieved in France (240 MWe in the Rance Estuary, since 1966), Canada (20 MWe at Annapolis in the Bay of Fundy, since 1984) and Russia (White Sea, 0.5 MWe), and could be achieved in certain other areas where there is a large tidal range. The trapped water can be used to turn turbines as it is released through the tidal barrage in either direction. Worldwide this technology appears to have little potential, largely due to environmental constraints.

However, placing free-standing turbines in major coastal tidal streams appears to have greater potential, and this is being explored.

Currents are predictable and those with velocities of 2 to 3 metres per second are ideal and the kinetic energy involved is equivalent to a very high wind speed. This means that a 1 MWe tidal turbine rotor is less than 20 m diameter, compared with 60 m for a 1 MWe wind turbine. Units can be packed more densely than wind turbines in a wind farm, and positioned far enough below the surface to avoid storm damage. A 300 kW turbine with 11 m diameter rotor in the Bristol Channel can be jacked out of the water for maintenance. Based on this prototype, early in 2008 the 1.2 MWe SeaGen twin turbine was installed in Strangford Lough, Northern Ireland, billed as the first commercial unit of its kind the world’s largest grid-connected tidal stream turbine. It produces power 18-20 hours per day and is operated by a Siemens subsidiary. The next project is a 10.5 MWe nine-turbine array off the coast of Anglesey. An 86 MWe tidal turbine project in Pentland Firth, between Orkney and the Scottish mainland has been approved, and MeyGen’s initial 9 MWe demonstration array of six turbines is expected on line in 2015, using Atlantis and Andritz technology. The first Atlantis 1MWe prototype was deployed at the European Marine Energy Centre at Orkney in 2011, and a 1 MWe Andritz Hydro Hammerfest prototype is also deployed there.

Some tidal stream generators are designed to oscillate, using the tidal flow to move hydroplanes connected to hydraulic arms sideways or up and down. A prototype has been installed off the coast of Portugal.

Another experimental design is using a shroud to speed up the flow through a venturus in which the turbine is placed. This has been trialled in Australia and British Colombia.

A major pilot project using three kinds of tidal stream turbines is being installed in the Bay of Fundy’s Minas Passage, about three kilometers from shore. Some 3 MWe will be fed to the Canadian grid from the pilot project. Eventually 100 MWe is envisaged. The three designs are a 10m diameter turbine from Ireland, a Canadian Clean Current turbine and an Underwater Electric Kite from USA.

Tidal power comes closest of all the intermittent renewable sources to being able to provide a continuous and predictable output, and is projected to increase from 1 billion kWh in 2002 to 35 billion in 2030 (including wave power).

 

Wave Energy

Harnessing power from wave motion is a possibility which might yield significant electricity. The feasibility of this has been investigated, particularly in the UK. Generators either coupled to floating devices or turned by air displaced by waves in a hollo3w concrete structure (oscillating water column) are two concepts for producing electricity for delivery to shore. Other experimental devices are submerged and harness the changing pressure as waves pass over them. The first commercial wave power plant is in Portugal, with floating rigid segments which pump fluid through turbines as they flex at the joints. It can produce 2.25 MWe. Another – Oyster – is in UK and is designed to capture the energy found in nearshore waves in water depths of 12 to 16 metres. Each 200-tonne module consists of a large buoyant hinged flap anchored to the seabed. Movement of the flap with each passing wave drives a hydraulic piston to deliver high-pressure water to an onshore turbine which generates electricity. The 315 kW demonstration module being tested in the Orkney Islands is expected to have about a 42% capacity factor.

Numerous practical problems have frustrated progress with wave technology, not least storm damage.

 

Ocean Thermal Energy

Ocean thermal energy conversion (OTEC) has long been an attractive idea, but is unproven beyond small pilot plants up to 50 kWe. It works by utilising the temperature difference between equatorial surface waters and cool deep waters, the temperature difference needing to be about 20ºC top to bottom. In the open cycle OTEC the warm surface water is evaporated in a vacuum chamber to produce steam which drives a turbine. It is then condensed in a heat exchanger by the cold water. The main engineering challenge is in the huge cold water pipe which needs to be about 10 m diameter and extend a kilometre deep to enable a large water flow. A closed cycle variation of this uses an ammonia cycle. The ammonia is vapourised by the warm surface waters and drives a turbine before being condensed in a heat exchanger by the cold water. A 10ºC temperature difference is sufficient.